cover of episode EP 566: Evaluating Warehouse Employee Performance with WorkScore.ai

EP 566: Evaluating Warehouse Employee Performance with WorkScore.ai

2025/2/26
logo of podcast The New Warehouse Podcast

The New Warehouse Podcast

AI Deep Dive AI Chapters Transcript
People
R
Rado Barss
Topics
Rado Barss: 我在迪拜和加拿大的多个仓库工作期间发现,由于员工绩效问题,仓库每月损失大量资金(例如,一个仓库每月损失约13万美元)。这主要归咎于三个方面:缺乏绩效透明度,导致员工缺乏动力;难以识别和纠正员工错误,因为大型仓库难以全面了解每个员工的工作情况;以及人员配备过剩,因为对劳动力需求的估计往往依靠经验而非数据。WorkScore.ai 通过收集员工的移动数据和行动数据,利用 AI 模块客观评估员工绩效,并提供效率指标的详细分析,从而解决这些问题。我们关注的三个主要指标是拣货准确率、订单履行率和考勤准时性。与其他关注流程的工具不同,WorkScore.ai 关注员工个体,提供全面的绩效评估,避免因个别因素(如员工个人问题)导致的绩效波动影响整体评估。我们致力于帮助员工获得应有的认可,并提高其绩效的透明度,消除员工对主管偏见或工作不被认可的担忧。通过将员工的移动数据与任务完成数据相结合,AI 可以分析员工的路线效率、空闲时间以及在指定工作区域内的时间分配,从而更全面地评估员工绩效。 Alex Bilyan: (由于访谈中Alex Bilyan的发言较少,此处补充一些基于Rado Barss观点的补充说明) 我们理解员工隐私的重要性,因此在系统设计中采取了多项措施来保护员工隐私。例如,管理者只能看到员工的总分,而员工可以查看详细的绩效数据,并可以选择与管理者共享数据以获得帮助。我们还通过游戏化机制(例如,基于绩效的奖金)来激励员工,这在我们的试点项目中取得了显著成效,极大地减少了员工对被追踪的抵制,并提高了整体绩效。我们相信,通过合理的设计和透明的沟通,WorkScore.ai 可以成为一个互利共赢的工具,既能帮助仓库提高效率和降低成本,又能帮助员工获得认可和提升绩效。WorkScore.ai 的未来发展方向是与电商平台合作,成为连接仓库和电商平台的桥梁,进一步优化供应链管理。

Deep Dive

Chapters
This chapter explores the common problems in warehouse performance evaluation, citing a lack of transparency, difficulty in employee improvement due to the inability to pinpoint mistakes, and overstaffing due to inaccurate labor estimations. The significant financial losses resulting from these issues are highlighted, setting the stage for the introduction of WorkScore.ai.
  • Lack of transparency in employee performance
  • Difficulty in identifying and addressing employee mistakes
  • Overstaffing due to inaccurate labor estimations
  • $130,000 monthly loss in one warehouse

Shownotes Transcript

Welcome to another episode of The New Warehouse Podcast, where we dive into a unique solution for evaluating warehouse employee performance. Alex Bilyan, Chief Sales Officer, and Rado Barss, Co-Founder and CEO of WorkScore.ai, join Kevin to explore their innovative platform for workforce evaluations in warehouse operations.

WorkScore.ai objectively and transparently measures warehouse employee performance using movement and task completion data. By leveraging AI, warehouse leaders can gain real-time insights into worker efficiency, address common productivity issues, and reduce unnecessary labor costs. The conversation unpacks the power of AI-driven evaluations, data transparency, and how gamification reshapes employee motivation.

Find Big Joe during ProMat at booth N7157.)

Learn more about Zebra Robotics here.)

Follow us on LinkedIn) and YouTube).

Support the show)