cover of episode Actantial Networks

Actantial Networks

2025/6/1
logo of podcast Data Skeptic

Data Skeptic

AI Deep Dive AI Chapters Transcript
People
A
Armin
H
Host
知名财务顾问和广播主持人,通过拉姆齐网络提供广泛的财务管理和职业发展建议。
Topics
Host: 行动者网络是一种新颖有趣的方法,它将自然语言转化为网络结构,从而研究语篇中的叙事。它通过将叙事中的行动者及其关系转化为网络节点和连接,为我们提供了一种分析和理解复杂社会政治现象的新视角。 Armin: 我正在开发一种方法,利用自然语言处理和网络科学的结合,从大型文本语料库中提取和分析叙事。我的目标是更好地理解叙事在社会政治现象(如两极分化和议题一致性)中所起的作用。我将政治叙事概念化为政治现实的一种表现形式,通过具有特定目标和动机的行为者来实现。这些行为者参与可能导致世界状态变化的事件,这些事件可以分解为行为者之间的关系。我们想要看到的是叙事信号,例如特定的行为者或短语,它们可能暗示更大的政治叙事。我们的目标是从大型文本语料库中提取这些叙事信号,并将它们重新组装成网络形式,以便理解语料库中存在的潜在叙事。

Deep Dive

Shownotes Transcript

In this episode, listeners will learn about Actantial Networks—graph-based representations of narratives where nodes are actors (such as people, institutions, or abstract entities) and edges represent the actions or relationships between them. 

The one who will present these networks is our guest Armin Pournaki, a joint PhD candidate at the Max Planck Institute for Mathematics in the Sciences and the Laboratoire Lattice (ENS-PSL), who specializes in computational social science, where he develops methods to extract and analyze political narratives using natural language processing and network science. 

Armin explains how these methods can expose conflicting narratives around the same events, as seen in debates on COVID-19, climate change, or the war in Ukraine. Listeners will also discover how this approach helps make large-scale discourse—from millions of tweets or political speeches—more transparent and interpretable, offering tools for studying polarization, issue alignment, and narrative-driven persuasion in digital societies. Follow our guest Armin Pournaki's Webpage)

Twitter/X)

Bluesky) Papers in focus How influencers and multipliers drive polarization and issue alignment on Twitter/X, 2025)

A graph-based approach to extracting narrative signals from public discourse, 2024)