cover of episode Ep 476: Top Reason For AI Failure - Cognitive Bias

Ep 476: Top Reason For AI Failure - Cognitive Bias

2025/3/6
logo of podcast Everyday AI Podcast – An AI and ChatGPT Podcast

Everyday AI Podcast – An AI and ChatGPT Podcast

AI Deep Dive AI Chapters Transcript
People
A
Anatoly Shilman
J
Jordan Wilson
一位经验丰富的数字策略专家和《Everyday AI》播客的主持人,专注于帮助普通人通过 AI 提升职业生涯。
Topics
Jordan Wilson: 我认为许多人盲目地复制粘贴大型语言模型的结果,这很危险,因为这些模型可能存在缺陷,并不总是反映事实。大型语言模型是互联网和社会的反映,其中存在许多问题,因此模型的结果可能存在缺陷。 Anatoly Shilman: 我们创建了一个平台来检测和减轻沟通中的认知偏差。该平台可以帮助人们提出更好的问题,改进写作,并审核AI代理的对话。盲目信任AI的结果是错误的,因为AI是由人创造的,它会像人一样犯错,并带有创造者自身的偏见。人们对AI的热情掩盖了对其潜在问题的忽视,应该保持“信任但验证”的态度。认知偏差是指基于我们感知的非理性信念,它既能帮助我们也能阻碍我们。AI模型中的偏见源于人类,因为AI是由人类创建和训练的,它会继承人类的偏见和感知。大型语言模型中常见的认知偏差包括确认偏差、框架偏差和可用性启发法,这些偏差会影响我们对模型输出的感知和理解。提示工程会影响AI模型的输出,因为提示会影响模型对信息的理解和处理方式,从而导致偏见。训练数据中的偏见会影响AI模型的输出,因为模型会学习并复制训练数据中的偏见。AI模型的训练数据量巨大,模型自身进行标签,这会导致偏见,因为模型无法像人类一样全面地理解信息。要消除与重要数据紧密相关的偏见,公司需要寻求外部帮助,并对数据处理流程进行客观评估。检测认知偏差并鼓励慢速思考而不是快速思考,对于提高AI模型的准确性和减少偏见至关重要。不同模型由于训练方式不同,可能存在不同程度的固有偏见,大型语言模型通常比小型模型具有更多偏见。

Deep Dive

Shownotes Transcript

Send Everyday AI and Jordan a text message)

Training data is biased. Humans are flawed. Which is a major reason AI can fail – cognitive bias. Anatoly Shilman, CEO of Cogbias AI, joins us as we chat about what cognitive bias is in AI, why it's important, and what we can all do about it. Newsletter: Sign up for our free daily newsletter)**More on this Episode: **Episode Page)**Join the discussion: **Ask Jordan and Anatoly questions on AI bias)Upcoming Episodes: Check out the upcoming Everyday AI Livestream lineup)Website: YourEverydayAI.com)Email The Show: [email protected])**Connect with Jordan on **LinkedIn)**Topics Covered in This Episode:1. Understanding Cognitive Bias2. Cognitive Bias in AI Models3. Training Data and Model Development4. Future of AI and Managing BiasTimestamps:**02:00 Daily AI News06:16 Cognitive Bias Mitigation Platform08:50 AI Enthusiasm vs. Cautionary Tales12:48 AI Bias Stems from Human Bias16:14 Influence of System Prompts on Bias19:46 AI Information Parsing Challenges20:56 AI Training and Labeling Challenges24:05 "Achieve AI Success with Expertise"28:23 Bias and Diversity in AI Models31:33 Addressing Cognitive Bias in Data

**Keywords:**Cognitive bias, AI failure, large language models, ChatGPT, Gemini, Copilot, Claude, bias reflection, AI news, AI sales tools, Microsoft, Salesforce, Microsoft 365 Copilot, Sales Agent, Sales Chat, Google, AI mode, Google One AI Premium, Gemini 2.0, OpenAI, AI agents, enterprise automation tools, confirmation bias, heuristic, framing bias, hallucination, training data, model perception, data labeling, reasoning models, agentic environments.

Ready for ROI on GenAI? Go to youreverydayai.com/partner )