We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode EP 506:  How Distributed Computing is Unlocking Affordable AI at Scale

EP 506: How Distributed Computing is Unlocking Affordable AI at Scale

2025/4/17
logo of podcast Everyday AI Podcast – An AI and ChatGPT Podcast

Everyday AI Podcast – An AI and ChatGPT Podcast

AI Deep Dive AI Chapters Transcript
People
J
Jordan Wilson
一位经验丰富的数字策略专家和《Everyday AI》播客的主持人,专注于帮助普通人通过 AI 提升职业生涯。
T
Tom Curry
Topics
Jordan Wilson: 生成式AI和大型语言模型的兴起使得计算能力变得越来越重要,开源模型的进步也使得更多公司开始关注计算能力。分布式计算是解锁大规模经济适用型AI的关键。 Tom Curry: Distribute AI通过利用闲置计算资源,为消费者和企业提供更经济的AI解决方案,并创建更开放、易访问的AI生态系统。我们提供双向解决方案:企业可以贡献闲置计算资源,同时也可以使用平台上的AI模型。 当前的芯片技术已接近其计算能力的峰值,无法满足不断增长的AI模型计算需求。大型科技公司也难以满足日益增长的AI计算需求,导致资源紧张,AI模型的计算需求巨大,对电力资源造成压力。 AI模型既在变得更小更有效率,也在变得更大更复杂,这给行业带来了挑战。更小、更高效的模型(例如DeepSeek)结合实时数据和推理能力,将推动AI技术进步。 开源模型与封闭模型之间的差距正在缩小,这将推动边缘计算的发展,并对GPU需求产生影响。边缘计算将承担更多日常任务,而大型模型则用于更复杂的应用场景。未来,人们出于对隐私的担忧,可能会更多地使用边缘计算来运行AI模型。 如果AI模型商品化,计算能力将成为提供AI服务的关键竞争因素。虽然开源模型的崛起对封闭式AI公司构成挑战,但封闭式AI公司仍有其独特的优势和应用场景,例如处理敏感数据(如医疗数据)。封闭式AI公司未来可能专注于处理敏感数据(如医疗数据)的应用场景,以及政府合同等。 商业领袖在使用AI时应保持开放和灵活的态度,避免过度依赖单一供应商或模型,因为AI领域的形势变化迅速。

Deep Dive

Chapters
The conversation begins by highlighting the rising importance of compute in AI, particularly with the increasing prevalence of generative AI and large language models. The discussion emphasizes how the need for compute is now a top priority for many businesses due to the potential offered by advanced AI models.
  • Increased importance of compute in AI, especially with generative AI and large language models.
  • Compute is now a key priority for many businesses due to the new possibilities offered by AI models.

Shownotes Transcript

Everyone’s chasing bigger AI. The real opportunity? Smarter scaling.Distributed computing is quietly rewriting the rules of what’s possible—not just for tech giants, but for everyone building with AI.We’re talking cost. We’re talking scale. And we’re definitely talking disruption.Tom Curry, CEO and Co-Founder of DistributeAI, joins us as we dig into the future of distributed power and practical AI performance.

Newsletter: Sign up for our free daily newsletter)**More on this Episode: **Episode Page)**Join the discussion: **Thoughts on this? Join the convo.)Upcoming Episodes: Check out the upcoming Everyday AI Livestream lineup)Website: YourEverydayAI.com)Email The Show: [email protected])**Connect with Jordan on **LinkedIn)Topics Covered in This Episode:

  • Distributed Computing for Affordable AI
  • Open Source vs. Proprietary AI Models
  • GPU Demand and Compute Limitations
  • Edge Computing and Privacy Concerns
  • Small Business AI Compute Solutions
  • Future Trends in AI Model Sizes
  • Impact of Open Source AI Dominance

**Timestamps:**00:00 Rising Importance of AI Compute

06:21 AI Model Resource Constraints

09:24 AI Models' Efficiency vs. Complexity

12:24 Edge Compute for Daily Tasks

16:00 Compute Cost Drives AI Market

16:58 AI Models: Balancing Cost and Innovation

20:43 Adaptability in Rapidly Changing Business**Keywords:**Distributed computing, compute, GPUs, generative AI, ChatGPT, large language models, open source models, proprietary models, affordable AI, scale, Distribute AI, spare compute, Tom Curry, mid-level businesses, accessible AI ecosystem, API access, power grid, NVIDIA, OpenAI, tokens, chain of thought, models size, reasoning models, edge computing, cell phones analogy, data privacy, DeepSeek, Google Gemini 3, Eloscores, open models, hybrid models, centralized model, OpenAI strategy, Anthropic, Claw tokens, commoditization, applications, government contracts, integration, UX and UI, technology advancements, private source AI, business leaders, AI deployment strategy, flexibility in AI.

Send Everyday AI and Jordan a text message. (We can't reply back unless you leave contact info) )