We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode How Databricks Revolutionize Intelligent Enterprise AI in ASEAN with Patrick Kelly

How Databricks Revolutionize Intelligent Enterprise AI in ASEAN with Patrick Kelly

2025/4/6
logo of podcast Analyse Asia with Bernard Leong

Analyse Asia with Bernard Leong

AI Deep Dive AI Chapters Transcript
People
P
Patrick Kelly
Topics
Patrick Kelly: 我参与了一项与《经济学人》合作的全球调查,其中包括欧洲和亚太地区。我们询问了这样一个问题:‘贵组织目前的架构是否能够满足 AI 工作负载的独特需求?’基本上,85% 的受访者回答‘否’。他们没有能够支持 AI 的架构,或者需要大量的修改。这表明许多人仍处于早期阶段,这也与以下数据点相呼应:85% 的生成式 AI(概念验证)尚未投入生产。另一个有趣的点是:‘您的架构是否将 AI 应用与相关的业务数据连接起来?’对我来说,这可能更为重要。结果仍然是 80% 左右的受访者表示‘没有’,因为业务数据散落在各处。没有干净的数据,就无法获得良好的 AI。 Databricks 的使命是使数据和 AI 民主化,帮助数据团队解决世界上最棘手的问题。数据是核心,没有数据就无法进行 AI。我们发明了 Spark,彻底改变了大规模数据处理的方式。我们率先推出了 Lakehouse 概念,它结合了数据湖和数据仓库的功能,降低了总拥有成本 (TCO) 并实现了自助式分析。我们现在专注于数据智能,即客户如何利用自然语言实现洞察力的民主化,并在其自己的私有企业数据之上构建 AI。我们始终强调不要将数据交给 Databricks,而应在数据之上驱动洞察力,从而真正区分您的业务。 Lakehouse 支撑着一切。所有数据都存储在低成本的云存储中,分析师和数据科学家可以使用相同的数据副本。有了这单个数据副本,就可以运行机器学习模型,并使用不同的数据集进行训练,而不会出现数据漂移问题。然后,可以在 Lakehouse 架构之上添加智能,我们称之为数据智能。生成式 AI 显然在 GPT 出现后风靡一时,但我们并没有忘记经典的 AI,例如预测客户流失、预测需求和优化客户体验等。生成式 AI 显然会生成内容,并提供智能顾问和金融服务中的机器人顾问。我认为我们应该从更广泛的意义上谈论 AI,既包括生成式 AI,也包括经典 AI。 在 ASEAN,我们拥有从高度管制的行业(如金融服务和电信)到 Grab 等大型数字原生客户的各种客户。Grab 使用 Databricks 多年来构建客户数据平台,管理数百万个数据点,构建以客户为中心的体验并个性化推荐。GetGo 使用 Databricks 提高了客户满意度和车队利用率,将洞察力交付速度提高了七倍,并将燃料盗窃减少了 50%。GovTech 使用 Databricks 实现了数据民主化,将仪表板创建速度提高了三倍,每年节省了 8000 个工时。暹罗商业银行 (SCB) 使用 Databricks 创建无缝且个性化的数字银行体验,并实现了即时贷款审批,将数字贷款产品的批准率提高了两倍。 客户是反馈的最终来源。我们根据客户的反馈改进产品功能。例如,Databricks Assistant(我们的 UI)包含编码部分和表格,其中许多都是来自我们社区和客户的反馈。 我们收购 Mosaic AI 是一个改变游戏规则的事件,它使我们能够深入研究企业级质量,即在安全性、治理和低成本服务方面具有鲁棒性。我们的立场是,您应该完全控制自己的数据和模型。我们提供生产质量规模,并支持本地支持。我们构建了一个端到端的生成式 AI 框架,希望抽象出许多技术细节,让客户能够专注于从数据中获得所需的内容。 我们看到生成式 AI 的主要趋势是代理,以及客户希望访问所有受管理的数据。治理和安全性至关重要,它不是附加组件,而应该从一开始就建立起来。在 ASEAN,我们看到不同阶段的采用情况。先进的数字原生企业正在挑战我们提供更好的性能、更好的性价比和更好的结果。企业客户正在寻求迁移到云端,构建云端的 Lakehouse。中小型企业正在寻找经济高效的商业智能解决方案,并能够进行自助式分析。我们正在提供 AI BI,它结合了商业智能和 AI,让用户能够通过自然语言提问并获得答案。 调查显示,大部分组织缺乏支持 AI 工作负载的架构,并且 AI 应用与业务数据未连接。ASEAN 国家认为生成式 AI 对长期战略目标至关重要。对于企业而言,应该从产品设计开始考虑 AI 应用,然后考虑底层技术。许多 POC 已经投入生产,尤其是在内部知识聊天机器人、客户服务辅助和内容创建方面。 我希望人们更多地询问我什么是数据智能。数据智能是使数据民主化以获得洞察力的过程,无论公司规模大小,都应该采用这种方法。对于 Databricks 在 ASEAN 的未来,我们认为这是一个改变人们工作、生活和彼此联系方式的千载难逢的机会。我们将继续投资于我们的员工、资源和技术,并与合作伙伴一起建立生态系统,培养数百万人才。

Deep Dive

Chapters
Patrick Kelly, Senior Director at Databricks, discusses the company's role in powering enterprise AI applications in ASEAN. He highlights the importance of data quality and the Lakehouse architecture, sharing customer success stories and insights into generative AI trends in the region.
  • Databricks pioneered the Lakehouse architecture, combining data lake and data warehouse capabilities.
  • 85% of organizations lack proper architecture to support AI workloads.
  • Clean data is foundational for effective AI implementation.

Shownotes Transcript

" We did a survey with The Economist globally which obviously included Europe and APAC as well. And we asked the question, 'Does my organization's current architecture supports the unique demands of AI workloads.' Basically 85% said, 'No. We don't have the architecture to support it.' Some partially does, but it needs lots of modifications. So we can still feel a lot of people are still in the early stages and that data point ties back to: 85% of GenAI [proof of concepts] has not gone into production. I think that another interesting point is, 'Does your architecture connect AI application? -your relevant business data.' which is probably nearly even more important for me. Again, it was still about 80%- 'We don't have that.' Because that business data is all over the place. Without the clean data, you cannot get good AI." - Patrick Kelly Fresh out of the studio, Patrick Kelly, Senior Director for Digital Natives, Startups & Enterprise and Commercial Sales in Southeast Asia at Databricks, joins us to discuss how data intelligence is powering enterprise AI applications in ASEAN. Beginning with his career journey from network engineering to tech leadership across Asian markets, Patrick explained how Databricks pioneered the Lakehouse architecture and integrated generative AI into enterprise workloads. Emphasizing the critical role of data quality in AI success, he showcased compelling customer case studies from across ASEAN and revealed striking generative AI trends in Asia - notably that 85% of organizations lack proper architecture to support AI workloads, reinforcing that clean data remains foundational for effective AI implementation. Patrick concluded by sharing his vision of what success looks like for Databricks in Southeast Asia.

Audio Episode Highlights: [00:46] Quote of the Day #QOTD [01:49] Introduction: Patrick Kelly from Databricks [02:28] Career journey from network engineering to technology sales leadership [06:43] Lessons from Patrick's career journey [09:10] The Data & AI total market opportunity in Southeast Asia and How Databricks is poised to capture the market. [10:08] How Databricks pioneered the Lakehouse concept, combining data lake and data warehouse capabilities. [15:24] The One Thing that Patrick know about Databricks that very few do. [17:52] Customer success stories from Grab, GetGo, GovTech to Siam Commercial Bank [22:50] How Mosaic AI positioned Databricks to develop enterprise-quality AI solutions with customers. [27:29] Key Trends in Asia Pacific on Generative AI. [32:23] The Importance of Data Architecture for Enterprises adopting AI. [35:13] Advice for Businesses on Implementation of AI [37:25] What does great look like for Databricks? [41:40] Closing remarks and invitation to the Data and AI Summit.

Profile: Patrick Kelly, Senior Director for Digital Natives, Startups & Enterprise and Commercial Sales in Southeast Asia at Databricks.

LinkedIn: https://www.linkedin.com/in/patrick-kelly-aab6168/

Podcast Information: Bernard Leong hosts and produces the show. The proper credits for the intro and end music are "Energetic Sports Drive." G. Thomas Craig mixed and edited the episode in both video and audio format. Here are the links to watch or listen to our podcast.

Analyse Asia Main Site: https://analyse.asia

Analyse Asia Spotify: https://open.spotify.com/show/1kkRwzRZa4JCICr2vm0vGl

Analyse Asia Apple Podcasts: https://podcasts.apple.com/us/podcast/analyse-asia-with-bernard-leong/id914868245

Analyse Asia YouTube: https://www.youtube.com/@AnalyseAsia

Analyse Asia LinkedIn: https://www.linkedin.com/company/analyse-asia/

Analyse Asia X (formerly known as Twitter): https://twitter.com/analyseasia

Analyse Asia Threads: https://www.threads.net/@analyseasia

Sign Up for Our This Week in Asia Newsletter: https://www.analyse.asia/#/portal/signup

Subscribe Newsletter on LinkedIn https://www.linkedin.com/build-relation/newsletter-follow?entityUrn=7149559878934540288