We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode #175 From electrical engineering student to CTO with Hitesh Choudhary

#175 From electrical engineering student to CTO with Hitesh Choudhary

2025/6/6
logo of podcast freeCodeCamp Podcast

freeCodeCamp Podcast

AI Deep Dive AI Chapters Transcript
People
H
Hitesh Choudhary
Topics
Hitesh Choudhary: 我认为AI编码工具确实很强大,但它们有明显的局限性。很多人,特别是学生,在接触AI时,希望利用它来构建各种应用,例如待办事项应用。AI确实可以完成这些任务,这让学生们感到担忧,认为AI可以取代他们的工作。但实际情况是,当你处理更复杂的代码库时,AI的能力会受到限制。例如,我们公司有一个大型的学习管理系统,拥有庞大的Ruby on Rails代码库。我们的工程师在使用AI时发现,AI提供的上下文信息不准确,生成的代码质量不高。尽管如此,我必须承认,AI确实提高了我们交付新功能的效率。通过掌握AI,你的代码编写效率可以提高1.5到2倍,但AI无法完成所有工作。目前,AI被过度宣传为能够解决所有问题的工具,但我们都知道这是不现实的。AI在上下文理解和学习能力方面存在限制。当你需要设计过去从未出现过的新功能时,AI无法提供帮助。当然,AI可以加速完成一些我不想做的任务,从而提高我的生产力。 Hitesh Choudhary: 在大型代码库中设计新功能时,我建议不要盲目信任AI自动生成的代码。不要随意点击“tab”键,让AI随意编写代码。我更倾向于使用代码编辑器中的“tab”功能,因为我可以选择我需要的代码类型。相比之下,如果我使用Cursor或Windsor等工具,它们有时会生成不错的代码,但大多数时候,它们会触及代码库中不应该修改的部分。这是我极力避免的。当然,如果我明确指定需要某些功能,AI有时也能很好地完成任务。总的来说,当处理大型代码库时,需要将大量的上下文信息输入到LLM中,这会迅速消耗tokens。而且,你可能会很快发现tokens用完了,导致开发工作中断。因此,仅仅依赖tokens并不是一个好主意,否则你将不得不不断购买更多的tokens,增加经济负担。此外,AI的效果还取决于编程语言的普及程度。对于像Ruby on Rails这样不太流行的语言,AI的局限性会更加明显。AI会根据语言的普及程度给出答案。因此,在选择技术栈时,我不认为AI会成为决定性因素。我仍然会考虑技术栈是否能满足需求,我是否喜欢它。最重要的是,我的现有开发者是否熟悉该技术栈,以及是否容易招聘到相关开发者。这才是我的首要考虑因素。

Deep Dive

Chapters
Hitesh Choudhary, former CTO and prolific programming teacher, shares his insights on the current state of AI coding tools. He acknowledges their usefulness in increasing productivity but emphasizes their limitations, particularly when dealing with large, complex codebases and designing novel features. The discussion highlights the challenges of context size, token limits, and the risk of AI tools unintentionally modifying critical code sections.
  • AI coding tools increase productivity but have limitations in complex codebases.
  • Context size and token limits restrict AI's capabilities.
  • Mindless trust in AI for code generation can lead to errors and break existing code.
  • Choosing a tech stack should prioritize developer familiarity and maintainability over AI compatibility.

Shownotes Transcript

On this week's episode of the podcast, freeCodeCamp founder Quincy Larson interviews former CTO and prolific programming teacher Hitesh Choudhary. We talk about: - The limits of AI in building a robust codebase - Time management - Higher Education in India - Lessons from training developers - Lessons you've learned from your travel Support for this podcast comes from a grant from Wix Studio. Wix Studio provides developers tools to rapidly build websites with everything out-of-the-box, then extend, replace, and break boundaries with code. Learn more at https://wixstudio.com. Support also comes from the 11,384 kind folks who support freeCodeCamp through a monthly donation. You can join these chill human beings and help our charity's mission by going to https://donate.freecodecamp.org) Links we talk about during our conversation: - Hitesh's TypeScript course on freeCodeCamp: https://www.freecodecamp.org/news/programming-in-typescript/ - Hitesh's project-oriented Appwrite course on freeCodeCamp https://www.freecodecamp.org/news/comprehensive-full-stack-react-with-appwrite-tutorial/ - Hitesh's Git course on freeCodeCamp: https://www.freecodecamp.org/news/learn-git-in-detail-to-manage-your-code/ - Hitesh's TED talk on time management: https://www.youtube.com/watch?v=s1KrFy_3LYQ