In the 30th episode of Neural Search Talks, we have our very own Arthur Câmara, Senior Research Engineer at Zeta Alpha, presenting a 20-minute guide on how we fine-tune Large Language Models for effective text retrieval. Arthur discusses the common issues with embedding models in a general-purpose RAG pipeline, how to tackle the lack of retrieval-oriented data for fine-tuning with InPars, and how we adapted E5-Mistral to rank in the top 10 on the BEIR benchmark.
InPars
Zeta-Alpha-E5-Mistral
NanoBEIR