We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode Authoring Creativity With AI: Researcher Patrick Hebron

Authoring Creativity With AI: Researcher Patrick Hebron

2024/6/12
logo of podcast Me, Myself, and AI

Me, Myself, and AI

AI Deep Dive AI Chapters Transcript
People
P
Patrick Hebron
S
Sam Ransbotham
Topics
Patrick Hebron: 本书探讨了机器学习与设计的交叉领域,机器学习可以帮助设计师解决复杂的配置问题,但其固有的不精确性对软件设计提出了挑战,需要设计师重新思考用户体验,尤其是在软件出现错误或误解时。应对AI系统不确定性的方法包括:当AI系统失败时回退到传统功能;让机器向用户展示其理解的内容,避免基于误解采取行动。AI工具的可发现性也是一个挑战,与传统软件的菜单系统相比,AI工具的功能可能隐藏更深,难以找到。基于归纳学习的AI系统,其结果存在不确定性,因为永远无法保证已经考虑了所有可能性。作者的背景是哲学和电影制作,这让他对设计工具和AI的结合产生了兴趣。作者学习编程是为了创建设计工具来制作电影,这让他对设计工具和AI的结合产生了持续的兴趣。AI可以通过改进现有工具的功能,在不改变用户体验的情况下提升设计效率。Adobe的内容感知填充功能就是一个例子,AI可以通过神经网络修复技术来改进其功能。AI带来了一些前所未有的设计能力,例如从文本生成图像或重新摆放人体姿势。潜在空间导航是一种强大的设计机制,它允许用户在机器学习模型的内部表示中探索和发现新的设计可能性。成功的工具应该能够被用户以意想不到的方式使用,而不仅仅是按照预期的方式使用。Minecraft中构建8位计算机的例子说明了开放式工具的价值,用户可以利用工具创造出意想不到的结果。AI的应用范围正在不断扩大,从最初的垃圾邮件分类到现在的创意领域,甚至可能扩展到科学和工程领域。AI可以帮助人们更好地进行设计和工程工作,就像艺术家在创作过程中不断调整和完善作品一样。AI有可能在科学和工程领域发挥变革性作用,帮助人们解决复杂的问题。AI不一定是零和博弈,它可以与人类合作,共同解决复杂问题。将AI应用于科学领域的一个挑战是模拟所作用的系统。无所不知的AI也存在缺点,它可能缺乏独特的视角和观点。通过强化学习和人类反馈来训练语言模型,可以使模型更具个性化和观点。 Sam Ransbotham: AI工具的用户界面设计面临挑战,需要在向用户展示新功能的同时避免信息过载。AI工具的用户界面设计需要在熟悉性和开放性之间取得平衡。

Deep Dive

Chapters
Patrick Hebron discusses the integration of generative AI in creative fields, emphasizing its potential to elevate human creativity and the challenges of designing user-friendly interfaces.

Shownotes Transcript

If you’ve played with Photoshop’s Generative Fill feature or worked in Nvidia’s Omniverse platform, you’ve touched tools that Patrick Hebron’s work has made possible.

A dual major in philosophy and film production, Patrick approaches creative pursuits with a deep curiosity and the belief that if a “tool gets used in exactly the way that we anticipated, then we have really failed catastrophically.” He believes that emerging digital design tools will elevate human creativity, and he aims to develop technology solutions that will empower creative end users to continue to push boundaries.

On this episode, Patrick describes some of the technical challenges in building generative AI solutions for creative pursuits, as well as their vast potential. Read the episode transcript here).

Guest bio:

Patrick Hebron is a designer, software developer, teacher, and author. His work explores the intersection of machine learning, design tools, programming languages, and operating systems. In particular, he has focused on the development of AI-driven digital design tools. He founded the Machine Intelligence Design groups at Nvidia and Adobe and was vice president of R&D at Stability AI. He is the author of Machine Learning for Designers), published by O’Reilly Media, as well as numerous articles, including Rethinking Design Tools in the Age of Machine Learning) and A Unified Tool for the Education of Humans and Machines). He has also worked as an adjunct graduate professor and scientist in residence at New York University.

Me, Myself, and AI is a collaborative podcast from MIT Sloan Management Review and Boston Consulting Group and is hosted by Sam Ransbotham and Shervin Khodabandeh. Our engineer is David Lishansky, and the coordinating producers are Allison Ryder and Andy Goffin.

Stay in touch with us by joining our LinkedIn group, AI for Leaders at mitsmr.com/AIforLeaders) or by following Me, Myself, and AI on LinkedIn).

We encourage you to rate and review our show. Your comments may be used in *Me, Myself, and AI *materials.