We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode Software and hardware acceleration with Groq

Software and hardware acceleration with Groq

2025/4/2
logo of podcast Practical AI: Machine Learning, Data Science, LLM

Practical AI: Machine Learning, Data Science, LLM

AI Deep Dive AI Chapters Transcript
People
D
Dhananjay Singh
Topics
Dhananjay Singh: 我是 Groq 的一名员工机器学习工程师。Groq 提供快速 AI 推理解决方案,涵盖文本、图像和音频,速度比传统提供商快得多。我们开发了 Groq LPU,这是一个软硬件平台,通过软件优先的设计理念实现低延迟和高吞吐量。我们首先开发了软件编译器,它负责 AI 模型中每个操作的调度,以实现确定性计算和网络。我们追求确定性系统,避免硬件组件和算法带来的延迟,以提高效率。我们的编译器不同于传统的基于内核的系统,它在更细粒度的级别上控制操作调度,避免了传统 GPU 架构的延迟问题。它控制模型在多个芯片上的精确分割和执行,以获得最佳性能。我们的软件栈大部分是定制开发的,底层使用一些 Linux 原语和 MLIR 系统。我们提供 REST 兼容的 API,方便开发者集成。在 LLaMA 370B 等模型上,我们实现了每秒数千个 token 的吞吐量。对于企业客户,我们提供专用实例和多租户架构。我们相信速度和准确性同样重要,更长的推理时间可以带来更高质量的结果。我们重视准确性、速度和成本,并支持多种模态。我们提供多种访问方式,包括网站上的聊天界面、API 以及为企业客户提供的专用实例。我们不断改进编译器以支持新模型,并努力减少厂商特定的硬编码。我们的系统核心是矩阵乘法和向量矩阵乘法,这与大多数机器学习模型相符。我们支持广泛的模型,并且我们的编译器可以独立于模型和架构工作。我们关注的是如何从新架构中获得最大性能。未来,我们预计基于边缘的部署和 API 调用将是首选接口。我们面临的挑战包括 AI 行业的快速发展和对新架构的适应。我对 AI 在编码方面的进步、推理模型、多模态和它们的融合感到兴奋。 Daniel Whitenack: 作为主持人,我主要对 Groq 的技术架构、软件栈以及其在不同模型上的性能表现提出了问题,并探讨了 Groq 的商业模式和开发者社区。 Chris Benson: 作为主持人,我主要关注 Groq 的技术细节,例如编译器的工作方式、软件栈的构成以及与其他平台的比较。

Deep Dive

Chapters
Groq provides high-speed AI inference solutions, surpassing traditional providers. The company developed its own software and hardware platform, Groq LPU, to achieve this. This contrasts with the traditional approach of developing hardware first.
  • Groq delivers AI responses at significantly faster speeds than traditional providers.
  • Groq developed the software compiler before the hardware.
  • Groq LPU is a software and hardware platform for fast AI inference.

Shownotes Transcript

How do you enable AI acceleration (at both the hardware and software layers) that stays ahead of rapid industry shifts? In this episode, Dhananjay Singh from Groq dives into the evolving landscape of AI inference and acceleration. We explore how Groq optimizes the serving layer, adapts to industry shifts, and supports emerging model architectures. 

Featuring:

Links:

Sponsors:

  • Augment Code) - Developer AI that uses deep understanding of your large codebase and how you build software to deliver personalized code suggestions and insights. Augment provides relevant, contextualized code right in your IDE or Slack. It transforms scattered knowledge into code or answers, eliminating time spent searching docs or interrupting teammates.

** ★ Support this podcast ★) **