We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode If DEI Programs Aren’t Effective, What Is?

If DEI Programs Aren’t Effective, What Is?

2025/2/11
logo of podcast HBR IdeaCast

HBR IdeaCast

AI Deep Dive AI Chapters Transcript
People
I
Iris Bonet
S
Siri Chilazi
Topics
Iris Bonet: 我认为“精英管理”是一个值得追求的理想,但现实情况是,我们并没有生活在一个精英管理的环境中。有大量证据表明,在职场中,女性和少数族裔在晋升和奖励方面面临着不公平的待遇。因此,我们需要修正我们的工作结构和流程,将公平融入其中,才能更接近这个理想。我认为,与其空谈“多元、公平、包容”,不如脚踏实地地从“公平”入手,通过数据驱动的方法来衡量和改进我们的工作流程,确保每个人都能获得平等的机会。 Siri Chilazi: 我认为衡量公平性需要采用与运营核心业务相同的分析方法。我们需要利用数据来识别组织内部存在的差距和不公平现象,例如,某些群体晋升速度较慢,或者在绩效评估中受到不公正的待遇。一旦我们发现了这些问题,就可以深入研究导致这些问题的流程,并采取有针对性的措施来解决它们。例如,我们可以重新设计招聘流程,以减少无意识的偏见,或者改进绩效评估体系,以确保每个人都能得到公平的评价。我认为,通过数据驱动的方法,我们可以逐步构建一个更加公平、公正的工作场所。

Deep Dive

Shownotes Transcript

Amid the backlash against diversity, equity, and inclusion (DEI) initiatives in the United States and elsewhere, leaders in both the public and private sectors are reevaluating their organizations' policies and goals. While many employers and employees still value and support DEI, a growing chorus argues that such programs run counter to meritocratic ideals. Iris Bohnet and Siri Chilazi of the Harvard Kennedy School think there's one principle everyone should be able to agree on -- fairness -- and argue for a data-driven approach to measuring it. They share their research on how to make workplace systems more fair and offer cases we can all learn from. They wrote the book Make Work Fair: Data-Driven Design for Real Results.