We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode How Machines Learn to Ignore the Noise (Kevin Ellis + Zenna Tavares)

How Machines Learn to Ignore the Noise (Kevin Ellis + Zenna Tavares)

2025/4/8
logo of podcast Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

AI Deep Dive AI Chapters Transcript
People
K
Kevin Ellis
Z
Zenna Tavares
Topics
Kevin Ellis: 我认为,构建更智能的AI的关键在于结合基于规则的符号推理和基于模式的直觉学习。这两种方法的结合,能够有效解决复杂的难题,例如ARC挑战。此外,组合性和抽象性是构建复杂模型的关键,但同时也面临着组合爆炸和信息过载的挑战。我们需要构建能够探索、实验和构建世界模型的AI,就像人类学习新事物一样。 在DreamCoder论文中,我们使用了wake-sleep策略,让模型能够通过“做梦”来扩展知识,并在清醒阶段将这些知识整合到模型中。这使得模型能够适应分布变化,并更好地解决问题。 在与Zenna Tavares合作的论文中,我们比较了归纳学习和转导学习两种方法。归纳学习通过生成程序来解决问题,而转导学习则直接输出结果。这两种方法各有优劣,可以结合使用。 我们发现,在某些问题上,仔细思考并用语言表达解决方案会降低效率。因此,我们需要构建能够结合这两种方法的系统,并能够根据问题的性质选择合适的策略。 在未来的研究中,我们将继续探索如何构建更强大的组合性模型,并解决组合爆炸和信息过载的问题。我们还将探索如何构建能够从少量数据中学习抽象知识的模型,并将其应用于现实世界中的问题。 Zenna Tavares: 我认为,构建更像人类的AI的关键在于从更少的例子中学习更抽象的知识,并能够主动探索和实验,而不是被动接收大量数据。 组合性是一把双刃剑,它既强大又容易让人不知所措。我们需要构建能够有效引导搜索空间的模型,并学习组合语言的基本原子。 在构建世界模型时,我们需要避免构建那些硬编码大量知识表示和启发式的系统。我们应该构建能够像人类一样学习与新事物互动的系统,而不是通过大规模模仿学习。 在我们的研究中,我们使用了结合不同方法的组合方法,包括归纳模型和转导模型。归纳模型输出一个程序,转导模型直接输出结果。这两种方法各有优劣,可以结合使用。 在未来的研究中,我们将继续探索如何构建能够进行贝叶斯推理的系统,并从第一性原理出发构建智能机器。我们还将探索如何构建能够学习和使用抽象知识的系统,并将其应用于现实世界中的问题。

Deep Dive

Shownotes Transcript

Prof. Kevin Ellis and Dr. Zenna Tavares talk about making AI smarter, like humans. They want AI to learn from just a little bit of information by actively trying things out, not just by looking at tons of data.

They discuss two main ways AI can "think": one way is like following specific rules or steps (like a computer program), and the other is more intuitive, like guessing based on patterns (like modern AI often does). They found combining both methods works well for solving complex puzzles like ARC.

A key idea is "compositionality" - building big ideas from small ones, like LEGOs. This is powerful but can also be overwhelming. Another important idea is "abstraction" - understanding things simply, without getting lost in details, and knowing there are different levels of understanding.

Ultimately, they believe the best AI will need to explore, experiment, and build models of the world, much like humans do when learning something new.

SPONSOR MESSAGES:


Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/


TRANSCRIPT:

https://www.dropbox.com/scl/fi/3ngggvhb3tnemw879er5y/BASIS.pdf?rlkey=lr2zbj3317mex1q5l0c2rsk0h&dl=0

Zenna Tavares:

http://www.zenna.org/

Kevin Ellis:

https://www.cs.cornell.edu/~ellisk/

TOC:

  1. Compositionality and Learning Foundations

[00:00:00] 1.1 Compositional Search and Learning Challenges

[00:03:55] 1.2 Bayesian Learning and World Models

[00:12:05] 1.3 Programming Languages and Compositionality Trade-offs

[00:15:35] 1.4 Inductive vs Transductive Approaches in AI Systems

  1. Neural-Symbolic Program Synthesis

    [00:27:20] 2.1 Integration of LLMs with Traditional Programming and Meta-Programming

    [00:30:43] 2.2 Wake-Sleep Learning and DreamCoder Architecture

    [00:38:26] 2.3 Program Synthesis from Interactions and Hidden State Inference

    [00:41:36] 2.4 Abstraction Mechanisms and Resource Rationality

    [00:48:38] 2.5 Inductive Biases and Causal Abstraction in AI Systems

  2. Abstract Reasoning Systems

    [00:52:10] 3.1 Abstract Concepts and Grid-Based Transformations in ARC

    [00:56:08] 3.2 Induction vs Transduction Approaches in Abstract Reasoning

    [00:59:12] 3.3 ARC Limitations and Interactive Learning Extensions

    [01:06:30] 3.4 Wake-Sleep Program Learning and Hybrid Approaches

    [01:11:37] 3.5 Project MARA and Future Research Directions

REFS:

[00:00:25] DreamCoder, Kevin Ellis et al.

https://arxiv.org/abs/2006.08381

[00:01:10] Mind Your Step, Ryan Liu et al.

https://arxiv.org/abs/2410.21333

[00:06:05] Bayesian inference, Griffiths, T. L., Kemp, C., & Tenenbaum, J. B.

https://psycnet.apa.org/record/2008-06911-003

[00:13:00] Induction and Transduction, Wen-Ding Li, Zenna Tavares, Yewen Pu, Kevin Ellis

https://arxiv.org/abs/2411.02272

[00:23:15] Neurosymbolic AI, Garcez, Artur d'Avila et al.

https://arxiv.org/abs/2012.05876

[00:33:50] Induction and Transduction (II), Wen-Ding Li, Kevin Ellis et al.

https://arxiv.org/abs/2411.02272

[00:38:35] ARC, François Chollet

https://arxiv.org/abs/1911.01547

[00:39:20] Causal Reactive Programs, Ria Das, Joshua B. Tenenbaum, Armando Solar-Lezama, Zenna Tavares

http://www.zenna.org/publications/autumn2022.pdf

[00:42:50] MuZero, Julian Schrittwieser et al.

http://arxiv.org/pdf/1911.08265

[00:43:20] VisualPredicator, Yichao Liang

https://arxiv.org/abs/2410.23156

[00:48:55] Bayesian models of cognition, Joshua B. Tenenbaum

https://mitpress.mit.edu/9780262049412/bayesian-models-of-cognition/

[00:49:30] The Bitter Lesson, Rich Sutton

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

[01:06:35] Program induction, Kevin Ellis, Wen-Ding Li

https://arxiv.org/pdf/2411.02272

[01:06:50] DreamCoder (II), Kevin Ellis et al.

https://arxiv.org/abs/2006.08381

[01:11:55] Project MARA, Zenna Tavares, Kevin Ellis

https://www.basis.ai/blog/mara/