Professor Randall Balestriero joins us to discuss neural network geometry, spline theory, and emerging phenomena in deep learning, based on research presented at ICML. Topics include the delayed emergence of adversarial robustness in neural networks ("grokking"), geometric interpretations of neural networks via spline theory, and challenges in reconstruction learning. We also cover geometric analysis of Large Language Models (LLMs) for toxicity detection and the relationship between intrinsic dimensionality and model control in RLHF.
SPONSOR MESSAGES:
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?
Goto https://tufalabs.ai/
Randall Balestriero
https://randallbalestriero.github.io/
Show notes and transcript: https://www.dropbox.com/scl/fi/3lufge4upq5gy0ug75j4a/RANDALLSHOW.pdf?rlkey=nbemgpa0jhawt1e86rx7372e4&dl=0
TOC:
Introduction
Neural Network Geometry and Spline Theory
00:01:41: Neural Network Geometry and Spline Theory
00:07:41: Deep Networks Always Grok
00:11:39: Grokking and Adversarial Robustness
00:16:09: Double Descent and Catastrophic Forgetting
Reconstruction Learning
00:18:49: Reconstruction Learning
00:24:15: Frequency Bias in Neural Networks
Geometric Analysis of Neural Networks
00:29:02: Geometric Analysis of Neural Networks
00:34:41: Adversarial Examples and Region Concentration
LLM Safety and Geometric Analysis
00:40:05: LLM Safety and Geometric Analysis
00:46:11: Toxicity Detection in LLMs
00:52:24: Intrinsic Dimensionality and Model Control
00:58:07: RLHF and High-Dimensional Spaces
Conclusion
01:02:13: Neural Tangent Kernel
01:08:07: Conclusion
REFS:
[00:01:35] Humayun – Deep network geometry & input space partitioning
https://arxiv.org/html/2408.04809v1
[00:03:55] Balestriero & Paris – Linking deep networks to adaptive spline operators
https://proceedings.mlr.press/v80/balestriero18b/balestriero18b.pdf
[00:13:55] Song et al. – Gradient-based white-box adversarial attacks
https://arxiv.org/abs/2012.14965
[00:16:05] Humayun, Balestriero & Baraniuk – Grokking phenomenon & emergent robustness
https://arxiv.org/abs/2402.15555
[00:18:25] Humayun – Training dynamics & double descent via linear region evolution
https://arxiv.org/abs/2310.12977
[00:20:15] Balestriero – Power diagram partitions in DNN decision boundaries
https://arxiv.org/abs/1905.08443
[00:23:00] Frankle & Carbin – Lottery Ticket Hypothesis for network pruning
https://arxiv.org/abs/1803.03635
[00:24:00] Belkin et al. – Double descent phenomenon in modern ML
https://arxiv.org/abs/1812.11118
[00:25:55] Balestriero et al. – Batch normalization’s regularization effects
https://arxiv.org/pdf/2209.14778
[00:29:35] EU – EU AI Act 2024 with compute restrictions
https://www.lw.com/admin/upload/SiteAttachments/EU-AI-Act-Navigating-a-Brave-New-World.pdf
[00:39:30] Humayun, Balestriero & Baraniuk – SplineCam: Visualizing deep network geometry
[00:40:40] Carlini – Trade-offs between adversarial robustness and accuracy
https://arxiv.org/pdf/2407.20099
[00:44:55] Balestriero & LeCun – Limitations of reconstruction-based learning methods
https://openreview.net/forum?id=ez7w0Ss4g9
(truncated, see shownotes PDF)