We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode Beyond Leaderboards: LMArena’s Mission to Make AI Reliable

Beyond Leaderboards: LMArena’s Mission to Make AI Reliable

2025/5/30
logo of podcast AI + a16z

AI + a16z

AI Deep Dive AI Chapters Transcript
People
A
Anastasios N. Angelopoulos
A
Anjney Midha
I
Ion Stoica
W
Wei-Lin Chiang
Topics
Anjney Midha: 我认为我们应该关注AI部署前的实时测试,而不是纠结于AI的最终考试应该是什么。我们应该实时地对AI进行评估,尤其是在AI被应用到关键任务领域时。 Wei-Lin Chiang: 为了支持这个项目并进一步扩大平台规模,我们希望创建一个公司。通过扩大用户规模,覆盖不同行业,我们将能够深入研究人们真正关心的关键任务领域。我们甚至可以为核物理学家、放射科医生等专家提供微型竞技场,让他们能够获得研究问题的最佳答案。 Ion Stoica: 许多人要求部署他们自己的私有竞技场,用于内部评估。即使在硬科学或关键任务行业中,人们提出的问题也大多是主观的。这些模型之所以有用,是因为它们能够处理不完全明确的问题,并给出带有主观性的答案。如果要在医疗和国防等领域部署这些系统,就必须接受数据是混乱的这一现实。Arena 已经成为大型实验室评估和测试的标准。

Deep Dive

Shownotes Transcript

LMArena) cofounders Anastasios N. Angelopoulos, Wei-Lin Chiang, and Ion Stoica sit down with a16z general partner Anjney Midha to talk about the future of AI evaluation. As benchmarks struggle to keep up with the pace of real-world deployment, LMArena is reframing the problem: what if the best way to test AI models is to put them in front of millions of users and let them vote? The team discusses how Arena evolved from a research side project into a key part of the AI stack, why fresh and subjective data is crucial for reliability, and what it means to build a CI/CD pipeline for large models.

They also explore:

  • Why expert-only benchmarks are no longer enough.
  • How user preferences reveal model capabilities — and their limits.
  • What it takes to build personalized leaderboards and evaluation SDKs.
  • Why real-time testing is foundational for mission-critical AI.

Follow everyone on X:

Anastasios N. Angelopoulos)

Wei-Lin Chiang)

Ion Stoica)

Anjney Midha)

Timestamps

0:04 -  LLM evaluation: From consumer chatbots to mission-critical systems

6:04 -  Style and substance: Crowdsourcing expertise

18:51 -  Building immunity to overfitting and gaming the system

29:49 -  The roots of LMArena

41:29 -   Proving the value of academic AI research

48:28 -  Scaling LMArena and starting a company

59:59 -  Benchmarks, evaluations, and the value of ranking LLMs

1:12:13 -  The challenges of measuring AI reliability

1:17:57 -  Expanding beyond binary rankings as models evolve

1:28:07 -  A leaderboard for each prompt

1:31:28 -  The LMArena roadmap

1:34:29 -  The importance of open source and openness

1:43:10 -  Adapting to agents (and other AI evolutions)

Check out everything a16z is doing with artificial intelligence here), including articles, projects, and more podcasts.