We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode 49. Nvidia A100, Training Game AI, Neural Networks | AI Developer Interview

49. Nvidia A100, Training Game AI, Neural Networks | AI Developer Interview

2020/5/20
logo of podcast Broken Silicon

Broken Silicon

Shownotes Transcript

Hot off the heels of the announcement of Nvidia A100, we have an AI Developer on to talk about what these massive GPU’s are actually used for – AI & ML applications.

SPONSOR: https://www.cdkoffers.com 25% Windows Code discount: brokensilicon 3% off all software: dieshrink Win10 pro oem key 13$: https://bit.ly/2Wdfghh Win10 Home oem key 10$: https://bit.ly/3dsbSFi Office 2016 key 27$: https://bit.ly/2Wb3sMx Office 2019 key 44$: https://bit.ly/2WdfBAz Win10 pro oem+Office 2016 35$: https://bit.ly/3bkJeVb

  1. 1:21 AI Buzzwords & Introductions (some sound issues)
  2. 6:03 What is a Neural Network?
  3. 12:53 Challenges in Training Neural Networks
  4. 16:21 Sparsity and Pruning
  5. 24:03 How will AI Improve our Lives?
  6. 35:42 Bottlenecks to AI Research
  7. 42:03 AI & ML in Gaming
  8. 47:38 CUDA Intrenchment, AMD’s ability to enter the market
  9. 50:58 Cerebras & Graphcore
  10. 55:53 AMD vs Nvidia Graphics
  11. 1:03:13 Comparing Synthetic AI to Biological Brains

https://www.thispersondoesnotexist.com/ https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/ https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ https://cirrascale.com/graphcore-cloud.php?utm_term=graphcore&utm_source=adwords&utm_medium=ppc&utm_campaign=Graphcore&hsa_net=adwords&hsa_grp=86815837387&hsa_mt=p&hsa_tgt=kwd-606839681642&hsa_kw=graphcore&hsa_src=g&hsa_acc=2793442874&hsa_cam=8112712212&hsa_ver=3&hsa_ad=397149594120&gclid=CjwKCAjwwYP2BRBGEiwAkoBpAuc9L_R5wt9rbYuJ7jeopg5W5YdYxaFBkNVpQz336TjcNJYg9jyZ2BoCX0MQAvD_BwE https://arxiv.org/pdf/1803.03635.pdf https://arxiv.org/pdf/1807.01281.pdf https://podcasts.google.com/feed/aHR0cHM6Ly9jaGFuZ2Vsb2cuY29tL3ByYWN0aWNhbGFpL2ZlZWQ/episode/Y2hhbmdlbG9nLmNvbS83LzcwNA?hl=en&ved=2ahUKEwiuzYfG_7jpAhUIHs0KHSavAhAQjrkEegQIBxAE&ep=6 https://twimlai.com/upside-down-reinforcement-learning/?fbclid=IwAR18e99xWPGUN0_SVG84IKUaT5KYSKVhzwMdq37goiOdDwRuUf8s9Z_8GSI https://en.wikipedia.org/wiki/Reinforcement_learning https://en.wikipedia.org/wiki/Concept_learning https://en.wikipedia.org/wiki/Unsupervised_learning#cite_note-2 https://arxiv.org/abs/1912.02875 https://arxiv.org/pdf/1912.02877.pdf https://www.alexirpan.com/2018/02/14/rl-hard.html https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/ https://ai.facebook.com/blog/state-of-the-art-open-source-chatbot/ https://openai.com/blog/jukebox/ https://www.pnas.org/content/pnas/116/43/21854.full.pdf