We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode Organizational Networks

Organizational Networks

2025/2/25
logo of podcast Data Skeptic

Data Skeptic

AI Deep Dive AI Chapters Transcript
People
A
Asaf
H
Hiroki Sayama
Topics
Asaf: 我对组织网络分析很感兴趣,特别是组织结构图如何反映组织的实际运作和决策过程。传统的组织结构图只显示了汇报关系,而忽略了实际的影响者和跨职能的合作。网络分析可以帮助我们找到实际的影响者,并揭示组织中隐藏的联系。 Hiroki Sayama: 我和我的合作者开发了一种算法,可以从传统的组织结构图(PDF文件)中提取信息,并将其转换为可量化的网络数据。这个过程很复杂,我们使用了基于启发式算法的方法,而不是人工智能方法。虽然我们的算法不能处理所有类型的组织结构图,但它成功地处理了大部分数据。我们使用NetworkX库来构建图对象,并对结果进行了人工验证。 我们的研究目标是探索组织结构与企业绩效之间的关系。我们发现,从CEO到员工的平均距离对企业财务成功有统计学意义的影响。公司规模和组织结构深度之间存在权衡关系。 我们还进行了一项实验,研究了团队绩效和网络结构之间的关系。我们发现,稀疏连接的网络比完全连接的网络产生了更多样化的想法,尽管团队成员在稀疏连接网络中的自我评价较低。这表明,过度连接可能会扼杀创新,而适当的连接性可以促进创新。 Hiroki Sayama: 我们的研究表明,组织结构对团队创造力和创新有显著的影响。完全连接的网络虽然团队成员的自我评价很高,但实际上会限制创造力和多样性,导致“群体思维”。而稀疏连接的网络,虽然团队成员的自我评价较低,但能够产生更多样化和更有效的创意。这与我们直觉的认知相反,但实验结果表明,适当的连接性对于促进创新至关重要。 我们还发现,将具有相似思维的人聚集在一起,可以促进深入探索,但最终需要将不同团队的结果整合起来。这表明,在创新过程中,可以先让团队成员分别探索,然后再进行整合,而不是一开始就进行头脑风暴。

Deep Dive

Chapters
This chapter explores the challenges and methods involved in automatically extracting network structures from corporate organizational charts. It details the process of converting bitmap images from PDF files into a computer-readable graph object, highlighting the use of heuristic algorithms and the Python NetworkX library.
  • Automated process to convert traditional organizational charts into computer-readable graph objects.
  • Used heuristic algorithms instead of AI/machine learning due to lack of training data.
  • Python NetworkX library used to construct graph objects.
  • 46% success rate in generating graph objects from 10,000-11,000 images.

Shownotes Transcript

Is it better to have your work team fully connected or sparsely connected?

In this episode we'll try to answer this question and more with our guest Hiroki Sayama, a SUNY Distinguished Professor and director of the Center for Complex Systems at Binghamton University.

Hiroki delves into the applications of network science in organizational structures and innovation dynamics by showing his recent work of extracting network structures from organizational charts to enable insights into decision-making and performance, He'll also cover how network connectivity impacts team creativity and innovation.

Key insights include how the structure of organizational networks—such as the depth of hierarchy or proximity to leadership—can influence corporate performance and how sparse network connectivity fosters more diverse and innovative ideas than fully connected networks.