We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode EP 436: AI You Can Trust - How reliable data makes it happen

EP 436: AI You Can Trust - How reliable data makes it happen

2025/1/9
logo of podcast Everyday AI Podcast – An AI and ChatGPT Podcast

Everyday AI Podcast – An AI and ChatGPT Podcast

AI Deep Dive AI Chapters Transcript
People
B
Barr Moses
Topics
Barr Moses: Monte Carlo致力于帮助企业减少数据停机时间,从而提高数据和AI的采用率。我们帮助数据团队及时发现数据问题,并找到根本原因和解决方案。这不仅包括识别问题,还包括判断问题的严重性和如何解决。数据可观测性在AI可靠性领域至关重要,它帮助数据团队回答'我是否应该关心这个问题?为什么?以及我该如何解决?'。 在过去,数据错误的影响较小,但现在,随着越来越多的人使用数据和AI,数据准确性变得至关重要。数据错误会直接影响用户体验和商业成功。例如,如果Uber的预计到达时间不准确,用户可能会流失。 在生成式AI时代,数据的重要性更加凸显。企业的数据是其竞争优势的关键,因为它可以用于构建高度个性化的产品。然而,只有不到三分之一的数据领导者对用于生成式AI模型的数据充满信心。 小型和中型组织在数据管理方面具有速度优势,可以更快地进行创新和实验。大型企业往往在整合数据和建立单一数据来源方面面临挑战。 我们应该优先确保数据的可靠性和可信度,而不是使用低质量数据。生成式AI可以用于各种用途,例如分析体育数据以识别异常情况,从而帮助设置数据质量监控器;构建个性化的财务助手,为用户提供准确的信用评分和财务建议;提高内部效率,例如通过编码助手提高工程生产力,或通过生成合规报告节省时间。 合成数据是一个新兴领域,它可能在未来发挥重要作用,但它不能完全取代现实世界的数据。数据治理和数据质量管理也变得越来越重要。 总而言之,生成式AI产品的质量取决于数据的质量。如果数据不可靠,那么生成式AI产品也将不可靠。确保数据可靠性是构建成功AI产品的首要任务。 Jordan Wilson: 在与Barr Moses的对话中,我主要关注于探讨可靠数据在生成式AI应用中的重要性,以及小型和中型企业如何利用数据来获得竞争优势。我们讨论了数据可观测性的概念,以及如何利用大型语言模型来提高数据质量和构建个性化产品。此外,我们还探讨了合成数据在未来可能扮演的角色。总的来说,我们的对话强调了高质量数据在AI成功应用中的关键作用,以及企业需要采取的措施来确保其数据的可靠性和可信度。

Deep Dive

Chapters

Shownotes Transcript

Send Everyday AI and Jordan a text message)

Your data is your moat. Everyone's got AI now. Find out how reliable data can make your competitive edge happen. Barr Moses, Co-Founder and CEO of Monte Carlo, joins us to discuss. Newsletter: Sign up for our free daily newsletter)**More on this Episode: **Episode Page)**Join the discussion: **Ask Jordan and Barr questions on AI and data)Upcoming Episodes: Check out the upcoming Everyday AI Livestream lineup)Website: YourEverydayAI.com)Email The Show: [email protected])**Connect with Jordan on **LinkedIn)**Topics Covered in This Episode:1. the Importance of Data2. Challenges and Opportunities in Leveraging Data3. Adoption of Data Practices4. Data Use Case Examples5.Generative AI, LLMs, and Data IntegrationTimestamps:**00:00 Empower AI proficiency with daily insights.06:02 Data observability ensures reliability and issue resolution.07:15 Understanding data's importance is crucial for businesses.13:07 Personalized AI relies on unique enterprise data.15:20 Large enterprises struggle with data consistency, smaller teams advantage.19:42 Generative AI analyzes sports data for insights.22:56 Personalized financial products using reliable data.23:56 Credit Karma Intune boosts external and internal productivity.28:02 Peak data reached; synthetic data becomes crucial.30:36 Recap available on your everydayai.com.**Keywords:**Generative AI, Data Usage, Data Accuracy, High-Quality Data, AI Implementation, Brand Reputation, Small Business Data Management, Data Systems, Trusting Data Sources, Everyday AI Podcast, Microsoft Partnership, Barr Moses, Monte Carlo, Data Downtime, Data Issues, Data Products, Data Observability, Data Adoption Forecast, Smaller Team Advantages, Microsoft WorkLab Podcast, Data Quality Monitor Recommendations, AI and Data Integration, Personalized Financial Products, Coding Assistants, AI for Compliance Reporting, Large Language Models, Synthetic Data, Real-World Data, Data Governance, Data Quality Management.