We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode AI is Making Enterprise Search Relevant, with Arvind Jain of Glean

AI is Making Enterprise Search Relevant, with Arvind Jain of Glean

2025/5/15
logo of podcast No Priors: Artificial Intelligence | Technology | Startups

No Priors: Artificial Intelligence | Technology | Startups

AI Deep Dive AI Chapters Transcript
People
A
Arvind Jain
Topics
Arvind Jain: 我认为LLM彻底改变了搜索范式。过去,搜索是基于关键词的,但现在LLM使我们能够更深入地理解用户的问题和文档内容,从而实现概念上的匹配。这使得搜索不再那么脆弱,并为新的搜索体验奠定了基础。我们现在可以超越简单的链接呈现,直接理解问题并利用已有知识提供答案。在Glean,我们很早就开始使用Transformer技术进行语义匹配,尽管当时这些技术还没有像现在这样普及。我们利用BERT模型为每个客户构建定制的embeddings,以增强搜索的语义理解能力。但是,我也认为,在企业搜索中,embeddings和向量搜索只是构建良好搜索系统的一部分,还需要考虑信息的时效性、正确性和权威性。构建企业搜索产品不仅要语义匹配用户问题和信息,还要确保信息的时效性、正确性和权威性。 Arvind Jain: 早期企业搜索公司失败的部分原因是,在pre-SaaS时代,难以访问和整合企业内部的各种数据。SaaS的兴起解决了数据访问问题,使得构建开箱即用的企业搜索产品成为可能。Glean的起源是因为在Rubrik内部面临信息分散的问题,找不到所需信息,因此决定自己构建解决方案。企业内部信息量巨大,需要构建可扩展的系统来处理这些数据,而云计算技术使得构建这样的系统成为可能。Transformer技术使得更深入地理解企业信息成为可能,这在企业环境中尤为重要,因为企业缺乏像互联网那样丰富的用户行为信号。尽管模型的能力不断增强,但仍然需要传统的信息检索和搜索技术以及新鲜度和权威性等信号。向模型提供信息时,信息的组织方式至关重要,以确保模型能够更好地理解和推理。

Deep Dive

Chapters
This chapter explores the transformative impact of Large Language Models (LLMs) on enterprise search. LLMs move beyond keyword-based search to a deeper understanding of user questions and document content, enabling more effective information retrieval.
  • LLMs enable a deeper understanding of user questions and document content.
  • The keyword-based paradigm of search has shifted to a conceptual matching approach.
  • LLMs make search less brittle and more powerful.

Shownotes Transcript

Arvind Jain joins Sarah and Elad on this episode of No Priors. Arvind is the founder and CEO of Glean, an AI-powered enterprise search platform. He previously co-founded Rubrik and spent over a decade as an engineering leader at Google. In this episode, Arvind shares how LLMs are transforming enterprise search, why most tools in the space have failed, and the opportunity to build apps powered by internal knowledge. He discusses how much customization is still needed on top of foundation models, what made building Glean uniquely challenging compared to Arvind’s previous ventures, and what’s next for the company.

Sign up) for new podcasts every week. Email feedback to [email protected]

Follow us on Twitter: @NoPriorsPod) | @Saranormous) | @EladGil) | @jainarvind)

Show Notes:

0:00 Introduction

0:58 How LLMs are changing search

2:05 Building out Glean’s platform

5:09 Why most search companies failed

8:41 Out of the box vs. bespoke models 

10:26 Creating apps on top of internal knowledge

15:34 User behaviors & insights 

19:11 Unique challenges of building Glean 

21:51 Product-led growth vs. enterprise sales

25:00 Succeeding in traditionally bad markets 

27:08 What Glean is excited to build next