We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode 857: How to Ensure AI Agents Are Accurate and Reliable, with Brooke Hopkins

857: How to Ensure AI Agents Are Accurate and Reliable, with Brooke Hopkins

2025/1/28
logo of podcast Super Data Science: ML & AI Podcast with Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

AI Deep Dive AI Chapters Transcript
People
B
Brooke Hopkins
Topics
Brooke Hopkins: 我是 Coval 的创始人兼首席执行官,我们构建了一个用于语音和聊天代理(最终目标是任何自主代理)的模拟、评估和监控平台。我们借鉴了 Waymo 自动驾驶汽车开发中的经验,旨在帮助公司在运行大量昂贵测试与实现高测试覆盖率之间取得平衡,解决在分布式系统上大规模运行复杂模拟、简化流程以及衡量和解读结果等问题。我们通过模拟多步骤代理工作流程,帮助客户自动化可靠的模拟和评估,解决手动测试耗时且难以管理上下文和状态的问题。我们的平台设计目标是将复杂的事情简化,让AI工程师能够专注于其他问题。Coval 的用户流程:从简单的单一提示测试开始,逐渐增加复杂性,并通过模拟测试、指标创建和生产监控迭代改进代理。我们应对AI代理级联错误的策略包括构建自愈型代理(例如后台“过度思考者”)、冗余系统和优雅的故障处理机制。我们使用多层指标,结合自动化指标和人工审查,并关注趋势而非绝对值来评估AI代理性能。Coval 提供了多种指标来评估AI代理的性能,包括工作流程遵循度、函数调用正确性以及与人类表现的比较。Coval 的实时监控功能可以帮助客户及时发现并解决问题,例如基础设施故障或新的用户行为模式。我们选择从语音代理入手,是因为语音代理领域正在快速发展,并且语音作为一种相对受限的媒介,更容易开发先进的指标和工作流程。语音代理的潜力远不止于取代电话,它可以创造全新的交互方式和应用场景,例如建立企业间的通用自然语言API。Y Combinator 的经历帮助我完善了 Coval 的业务方向,并从其他创业者那里获得了灵感和支持。 John Krohn: (对 Brooke Hopkins 的观点进行提问和引导,并总结讨论内容)

Deep Dive

Chapters
This chapter introduces Brooke Hopkins and Coval, a platform for simulating and evaluating AI agents. It highlights Brooke's background and Coval's recent success, setting the stage for a discussion on AI agent reliability and the future of AI.
  • Brooke Hopkins, founder and CEO of Coval
  • Coval is a simulation and evaluation platform for AI agents
  • Coval recently closed a $3.3 million fundraise
  • AI agents are poised to be the next major platform shift after mobile

Shownotes Transcript

Brooke Hopkins speaks to Jon Krohn about technology’s new frontiers in AI agents, how these agents will impact society, work and our creative enterprises, and what this might mean for our data-driven future. You will learn how Coval, a simulation and evaluation platform for AI voice and chat agents, helps companies balance precision and scalability while making few concessions on the way. 

This episode is brought to you by ODSC), the Open Data Science Conference. Interested in sponsoring a SuperDataScience Podcast episode? Email [email protected]) for sponsorship information.

In this episode you will learn:

  • (07:49) What Coval does and how the platform works

  • (21:16) Coval’s workflows

  • (37:40) The future of AI agents 

  • (46:28) The metrics to evaluate performance 

  • (55:08) How close we are to achieving AI agent autonomy

Additional materials: www.superdatascience.com/857)