We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode 870: OpenAI’s “Deep Research”: Get Days of Human Work Done in Minutes

870: OpenAI’s “Deep Research”: Get Days of Human Work Done in Minutes

2025/3/14
logo of podcast Super Data Science: ML & AI Podcast with Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

AI Deep Dive AI Chapters Transcript
People
J
Jon Krohn
Topics
Jon Krohn: 我认为 OpenAI 的 Deep Research 是目前世界上最强大的研究工具。它能够自动化深度文献综述,将数百个在线资源整合到一个连贯且有据可查的报告中。Deep Research 通过将复杂查询分解成更小的任务,搜索相关信息,并迭代地将结果整合到报告中来实现这一点。它就像一个全天候工作的专家研究员,能够以人类无法比拟的速度处理数据,将原本需要数天才能完成的任务在几分钟内完成。 Deep Research 使用端到端强化学习进行训练,能够处理各种领域的任务。它可以浏览用户上传的文件,使用 Python 绘制图表,将图像嵌入到响应中,并提供带具体引用的信息来源。在最近发布的 AI 评估“人类最后考试”中,Deep Research 取得了显著的成绩,准确率达到 27%,远高于其他 AI 模型。这表明 AI 在解决复杂问题方面取得了重大进展。 我个人订阅了 OpenAI Pro,每天都在使用 Deep Research。它帮助我节省了大量时间,例如,我最近用它来快速创建了一个研讨会的教学大纲,原本需要花费数小时的工作,Deep Research 只用了几分钟就完成了。Deep Research 能够根据我的要求和提供的示例,生成高质量的教学大纲、标题和摘要。它甚至会提出一些有建设性的问题,例如目标受众、编程重点和预期基调等,帮助我完善研讨会结构。 当然,Deep Research 也有一些局限性,例如可能出现幻觉或错误引用。但 OpenAI 正在努力改进这些问题。总的来说,Deep Research 正在改变研究流程,自动化信息收集、分析和综合过程,为数据科学和其他领域带来巨大的价值。它降低了高质量研究的门槛,使更多人能够受益。随着 AI 技术的不断发展,类似 Deep Research 的工具将进一步增强人类能力,自动化更多日常工作,推动创新和发展。

Deep Dive

Chapters
This chapter introduces OpenAI's Deep Research, a tool that automates literature reviews. It explains its functionality, the technology behind it (multi-step reasoning models and reinforcement learning), and its impressive capabilities, including web browsing, data synthesis, graph plotting, and citation generation.
  • Automates deep dive literature reviews
  • Synthesizes hundreds of online sources
  • Uses multi-step reasoning models
  • Trained using end-to-end reinforcement learning
  • Can browse user-uploaded files, use Python, embed images, and provide citations

Shownotes Transcript

In this Five-Minute Friday, Jon Krohn looks into what he considers the world’s most powerful research tool to date, OpenAI’s Deep Research. Find out how OpenAI trained Deep Research to compile literature reviews of limitless topics, what similar tools are on the market, and where Jon sees the tool as having real-world value including how he uses it daily.

Additional materials: www.superdatascience.com/870)

Interested in sponsoring a SuperDataScience Podcast episode? Email [email protected] for sponsorship information.