We're sunsetting PodQuest on 2025-07-28. Thank you for your support!
Export Podcast Subscriptions
cover of episode EP33:Web3 赛道的现状和未来系列第一辑——Crypto AI,方兴未艾还是泡沫时刻?

EP33:Web3 赛道的现状和未来系列第一辑——Crypto AI,方兴未艾还是泡沫时刻?

2024/12/11
logo of podcast WEB3 Mint To Be

WEB3 Mint To Be

AI Deep Dive AI Insights AI Chapters Transcript
People
L
Lydia
M
Max
Topics
Max: Crypto AI 旨在解决中心化 AI 的固有问题,例如审查制度和中心化风险。通过引入加密技术和代币激励机制,Crypto AI 可以促进开源模型的开发,并奖励参与者为去中心化 AI 生态系统做出贡献。Max 还将 Crypto AI 项目分为架构层、资源层和应用层三个层面,并分析了每个层面的机遇和挑战。他认为资源层相对成熟,而架构层和应用层仍处于早期阶段,需要进一步发展和验证。 Max 认为 Crypto AI 的成功取决于其效率和成本效益,必须优于传统的中心化 AI 产品才能获得广泛采用。他看好 BitTensor 项目,因为它建立了一个有效的代币激励机制,并拥有一个充满活力且技术精湛的团队。但他同时也指出了 BitTensor 的风险,例如代币持续稀释和中心化问题。 Max 认为目前是 Crypto AI 发展的好时机,因为加密货币市场受到更多关注,监管政策也趋于宽松。他建议关注资源层项目,例如 Akash 和 Render,以及架构层项目,例如 BitTensor 和 Near,以及应用层项目,例如 AI Agents。 Lydia: Lydia 对 Crypto AI 的商业价值持谨慎态度,认为其目前主要价值在于打开人们的想象力,而非直接的商业替代。她认为 Crypto AI 处于早期阶段,市场情绪与技术进展之间存在错配,许多项目缺乏明确的市场契合点。 Lydia 将 Crypto AI 项目分为两类:Crypto 赋能 AI 和 AI 赋能 Crypto。她认为 Crypto 赋能 AI 的潜力更大,但落地周期更长。她看好 AI Agents 的发展潜力,但同时也指出其目前存在过度炒作和同质化竞争的问题。 Lydia 认为未来 Crypto AI 的机遇在于提高效率,例如通过 AI 优化链上资产流动。她还建议关注 AI 伦理相关的话题,因为 Crypto 的公开透明特性使其在解决 AI 伦理问题方面具有优势。 Lydia 认为 BitTensor 是一个值得关注的项目,因为它拥有顶尖的团队、机构的采用以及项目生命力。她认为 BitTensor 的代币经济模型设计巧妙,能够有效激励参与者,并具有淘汰机制,能够持续优化生态系统。

Deep Dive

Key Insights

What are the main challenges currently faced by Crypto AI projects?

Crypto AI projects are still in their early stages, with much of their market value driven by speculation rather than proven product-market fit. Key challenges include the need for more mature applications, the risk of hype overshadowing actual technological progress, and the difficulty in achieving efficiency and cost-effectiveness compared to centralized AI solutions. Additionally, the token-based incentive mechanisms, while innovative, can lead to volatility and potential death spirals if not managed properly.

Why is BitTensor considered a standout project in the Crypto AI space?

BitTensor is notable for its innovative token-based incentive mechanism that rewards open-source AI development, promoting decentralization and transparency. It has a strong community and developer support, and its ecosystem includes various subnets focused on different AI applications. Despite its high inflation rate and centralized control over its mainnet, BitTensor has shown resilience and adaptability, making it a key player in the Crypto AI narrative.

What are the potential future opportunities for Crypto AI in the next 1-2 years?

In the next 1-2 years, Crypto AI could benefit from increased attention due to advancements in AI technology, such as the potential emergence of AGI (Artificial General Intelligence). The integration of AI with blockchain could address emerging issues in AI, such as data privacy and transparency. Additionally, the growing interest in AI agents and decentralized compute resources could open new avenues for innovation and adoption in the Crypto AI space.

How does the token-based incentive model in Crypto AI differ from traditional AI development?

The token-based incentive model in Crypto AI introduces a decentralized approach to rewarding open-source AI development, contrasting with the proprietary models of traditional AI. This model encourages collaboration and innovation by providing financial incentives for contributions to open-source projects, which can lead to more diverse and transparent AI ecosystems. Traditional AI, on the other hand, often relies on centralized entities that may restrict access to their models for profit.

What are the key factors to consider when evaluating Crypto AI projects for investment?

When evaluating Crypto AI projects, key factors include the strength and vision of the team, the project's product-market fit, its tokenomics, and the level of community and institutional support. The team's ability to execute and innovate is crucial, as is the project's potential to address real-world problems with AI and blockchain technology. Additionally, understanding the project's long-term viability and its ability to adapt to market changes is essential for making informed investment decisions.

Chapters
本节探讨了Crypto AI的定义,以及它尝试解决的商业问题。嘉宾们就Crypto AI是否解决了当下的商业问题存在分歧,有人认为其价值在于打开人们的想象力,而非直接的商业应用。
  • Crypto AI旨在解决中心化AI的审查和中心化问题
  • Crypto AI通过代币激励机制奖励开源模型,促进去中心化发展
  • 目前Crypto AI在提高效率和保证公平上,提高效率的迫切性大于保证公平
  • Crypto AI的商业价值可能体现在未来,而非现在

Shownotes Transcript

欢迎大家收听由Mint Ventures发起的播客【 WEB3 Mint To Be 】 本期节目是“Web3 赛道的现状和未来”系列播客的第一期,我们来聊聊备受关注的 Crypto AI 赛道。在后续的系列节目中,我们还会邀请对应的嘉宾来聊 Defi、Meme、公链、Depin、游戏&社交、Payfi,以及 web3 政策的相关话题。

这次邀请的两位嘉宾是一直在长期关注 Crypto AI 赛道的研究员。一位是 Max,他是 YouTube 频道 “Max 的区块链空间”的主理人,Twitter:@MaxCryptoSpace。另外一位是 Lydia,她是我们 Mint Ventures 的前研究员,目前在 Particle Network 任研究员。 Twitter:@HelloLydia13。 时间线: 0:01:37 对 Crypto AI 的理解

0:17:15 Crypto AI 赛道内的项目分类

0:23:30 Crypto AI 的机遇与挑战

0:40:30 值得关注的 Crypto AI 项目标的

0:52:38 Crypto AI 项目的评估策略

1:02:57 常用 AI 工具分享

重要声明:主持人或者嘉宾在播客中的观点仅代表他们的个人看法。此播客仅用于提供信息,不作为投资参考。